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A novel hybridised nearly-free-electron 
tight-binding-bond approach to interatomic forces in 
disordered transition-metal alloys: application to the 
modelling of metallic glasses 
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Abstract. We present a novel hybridised nearly-free-electron tight-binding-bond approach 
to interatomic forcesin topologically disordered transition-metal alloys and a first application 
to the atomistic simulation of transition-metal glasses. 

Over the last few years there has been increasing interest in the development of inter- 
atomic force fields for atomistic simulations (see, e.g., [l, 21). For the s,p-bonded 
metals and alloys, reliable interatomic potentials may be derived from pseudopotential 
perturbation theory [3]. For the d-bonded transition metals a tight-binding (TB) descrip- 
tion of the electronic structure is in many ways more appropriate than a free-electron 
picture [4]. Very recently it has been shown that the total energy of a d-electron system 
may be written within a tight-binding-bond (TBB) approximation as [5] 

I .  

where @d,rep(R) is a repulsive pair interaction provided by the electrostatic, exchange- 
correlation and non-orthogonality contributions to the total energy, and h,(Rj)8,,, is 
the attractive covalent bond energy between orbitals tpn,i and VP,, centred at sites i and 
j .  he@(Rij) is the hopping integral and Oij,@@ is the bond order [6], i.e. the difference 
between the number of electrons in the bonding 2-1/2(ve,i + Vb,,) and the antibonding 
2-1’2(vol,i - vB,,) states. The covalent bond energy involves explicitly only two-body 
terms, but three- and many-body contributions enter via the dependence of the bond 
order on the local atomic configuration. 

The direct application of this concept to transition metals and their alloys involves 
several serious complications. 

(i) The s, p and d partial pressures are both large, but of opposite sign [7]. This 
indicates that the s-electron contribution to the interatomic forces is non-negligible. 
However, it is not very well described in a TB picture. 

(ii) The bond order may be written as an integral over the imaginary part of the off- 
diagonal Green function [5]: 

Gij, aS(E) has to be calculated for a realistic reference configuration. 
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In this paper we present a novel hybridised nearly-free-electron (NFE) TBB approach 
to interatomic forces in disordered transition-metal alloys, with an application to the 
simulation of the structure of metallic glasses. Pseudopotential perturbation theory is 
used to write the s-electron contribution to the total energy as the sum of a volume 
energy and a pair-interaction term with a central pair potential QS(R) .  The d-electron 
contribution is treated in a TBB approximation. s-d hybridisation is taken into account 
in an approximate way by setting the numbers N, and Nd of s and d electrons for each 
component equal to the values resulting from a self-consistent electronic structure 
calculation for the crystalline metal. 

The determination of the bond order potential requires the calculation of the diagonal 
and off-diagonal Green functions for an appropriate reference configuration. We chose 
a Bethe lattice (or Cayley tree) [%lo] with a coordination number Z = 12, a random 
occupation of all sites and a single orbital per site (i.e. we assume the d orbitals with 
different magnetic quantum numbers to be degenerate and neglect the directionality of 
the d bonds, which seems to be legitimate for a liquid or glassy system). Restricting all 
interactions to nearest neighbours only, a closed system of equations may be constructed 
for the transfer matrices SIJ defined by Gi,o = SIjGi-1,0 (where I and J stand for the 
occupation of neighbouring sites i and i - 1 by A and B atoms) 

sII = hIIIE - &I - (z - l)hII(CISII + cJSJJ>l-’ 

SIJ = (hIJ/hII)SII 

(30) 

(3b) I, J =A, B; I + J 

where the are the on-site energies and hIJ = hJI the hopping integrals. Equations (3a) 
and (3b) may be reduced to a cubic equation and solved analytically. The diagonal and 
off-diagonal Green functions are then given by the standard relations 

GI(E) = ( E  - &I - XI)-’ I = A , B  (40) 
21 = Z ~ I I ( C I ~ I I  + CJSJJ) (4b) 
GIJ(E) = SIJGJ(E) I , J = A , B  (4c) 

I = A, B; J + I 
with the self-energies XI. This completely determines the bond order potential. 

Hence the construction of the effective interatomic interactions proceeds by the 
following steps. 

(i) Determination of the pseudopotential and TBB parameters for the pure metals. 
The number N,  of s electrons and the number Nd of d electrons are taken from a band- 
structure calculation for the crystalline metal [ll]. The average canonical hopping 
integral [12] hII(Rv) = [(dda2 + 2ddn2 + 2dd~3~)/5]’1~ = V%($)Wd,1(Ra/Rv)5 is ad- 
justed to the width Wd,I of the d band (R,  is the atomic radius at room temperature); 
hIJ = (hIIhjj)”2. The on-site energy is calculated for the electronic configuration sldN- 
of the free atom. The s-electron pseudopotential is modelled by an empty-core potential 
with core radius R, fitted to the zero-pressure condition [3].  Screening is treated in the 
Ichimaru-Utsumi [ 131 approximation to the dielectric function of the electron gas. 
Numerical values of all parameters for the alloys Ni-Y and Nb-Zr are given in table 1. 

(ii) Self-consistent TB Hartree-Fock calculation of the electronic structure of the 
random A-B alloy on the Bethe lattice, using standard values for the intra-atomic 
and interatomic Coulomb integrals (uss = 0.5 eV, u,d = 0.75 eV, Udd = 1.6 eV and V = 
0.25 eV) [14]), and respecting the constraint of local charge neutrality, i.e. 

(5a) dNS,1 + bNd,I = 0 
and the constraint of a constant total number of d electrons, i.e. 
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Table 1. Parameters for the effective interatomic potentials, density n and bond orders e,, 
for Ni33Y67 and NbSOZrSO alloys, with pure-metal reference values given in parentheses. See 
text for details. 

Ni33Y67 NbsoZr50 

Ni Y Nb Zr 

6 1  

0.58 1.27 
1.09 (1.40) 1.51 (1.31) 
8.91 (8.60) 1.49(1.69) 

0.278 0.485 
1.377 1.991 

-0.34 (-0.36) -0.14(-0.13) 

0.0356 
0.0389 

Ni-Ni Ni-Y Y-Y 
-0.40 -1.85 -1.25 

1.22 1.22 
1.20 (1.29) 1.39 (1.30) 
3.80 (3.71) 2.61 (2.70) 

0.716 0.616 
1.625 1.771 

-0.23 (-0.24) -0.19 (-0.18) 

0.0485 

Nb-Nb Nb-Zr Zr-Zr 
-2.613 -2.242 -1.823 

CA 6 N d . A  + CB d N d , B  = 0 (5b) 
(axI = xI - xp stand for the change in the quantity xI in the alloy relative to its pure- 
metal reference value). It may be shown that under the constraints (5a) and (56) the 
contribution of the promotion energy 

Ed,prom = C A ( N d , A  &A - N!,A &I) + CB(Nd,B &B - N!,B 

Ed,prom + Eintra = CA a N d , A  + CB a N d , B  (7) 

(6) 
to the alloy energy is compensated to first order in S N , , ,  by the change in the intra- 
atomic d-d and s-d interactions, except for a site-diagonal term 

which may be combined with the volume energy. 
(iii) Calculation of the effective pair interactions. Combining the pseudopotential 

approach with the s-electron interactions and the TBB approach with the d-electron 
bonding we find that the total energy of the A-B alloy assumes the form of a volume 
energy and a pair interaction term 

E A B  = Evol  + i @IJ(Rij) 
I, J i(I), j(J) = i(1) 

@d,bond;IJ(R) = hIJ(R)81J (9b) 
and the well known standard expressions for the s-electron [3] and repulsive d-electron 
[15, 161 contributions. The double sum in (8) extends over sites i, j occupied by I, J 
atoms. The total effective pair potential in (sa) and (9b) is calculated for the self- 
consistent number N s , I  of s electrons, self-consistent number N d , I  d electrons, on-site 
energies and bond orders 8 I j  resulting from step (ii); see table 1. Note that both the 
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s- and the d-electron contributions to the interatomic interaction will be weakly density 
dependent. The numbers given in table 1 refer to the solid phase. 

As representative examples we treat Ni-Y and Nb-Zr alloys. The Ni-Y phase 
diagram [17] is characterised by a deep eutectic minimum at the composition Ni33Y67, 
the formation of eight intermetallic compounds with compositions ranging from Ni,,Y 
to NiY3, and the formation of metallic glasses in a wide composition range centred at 
the eutectic. The phase diagram of Nb-Zr shows unlimited liquid and solid solubility at 
temperatures T 1200 K. From the point of view of the electronic structure the essential 
difference between the two alloys is that in Ni-Y the difference in the electronic d levels 
is of the same order as the average bandwidth, i.e. - E ~ /  = Wd, whereas, in Nb-Zr, 

- ~~~l 4Wd. As a consequence the electronic density of states (DOS) of Ni-Y is close 
to the split-band limit, with the lower part of the d band dominated by the Ni states and 
the upper part by the Y states (that the bands are actually separated by a narrow gap is 
an unimportant artefact of the Bethe lattice approximation). The DOS of Nb-Zr on the 
other hand is a good example for a common-band alloy with largely overlapping sub- 
bands (figures l(a) and l(b)). The form of the band has important consequences for the 
bond order potential; for a nearly filled sub-band such as Ni in Ni-Y the bonding 
contributions to &iNi from the lower part of the band are almost entirely compensated 
by the antibonding contributions from the upper part of the band. For &y and Oyy the 
bonding contributions dominate (figure l(c) and table 1). For a common-band alloy 
such as Nb-Zr we find bond orders of about equal magnitude for all three types of bond 
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Figure 2. Effective interatomic inter- 
actions in NiS3Y6, and Nb,oZrso alloys. 

(figure l(d) and table 1). The differences in the d bands and in the bond orders are 
reflected in the interatomic potentials (figure 2). In Ni-Y we have a strong covalent 
contribution to the Ni-Y and Y-Y interactions, but a much smaller one to the Ni- 
Ni interactions. The Ni-Y potential is much more attractive than the Ni-Ni or Y-Y 
potentials; its minimum occurs at a distance that is considerably shorter than the mean 
value of the interatomic distances in Ni and Y (which scale rather well with the position 
of the minima in QNiNi and Qpyy). In contrast to these strongly non-additive potentials 
the interatomic potentials in Nb-Zr are almost exactly additive in the sense that the Nb- 
Zr potential is the mean of the Nb-Nb and Zr-Zr interactions. 

As stated in the introduction our aim is to construct interatomic force fields for 
atomistic simulation of topologically disordered (liquid or amorphous) phases. From 
the form of the potentials it is evident that liquid Nb-Zr will be very close to a regular 
solution behaviour. The more interesting case is that of Ni-Y, especially in the glassy 
phase. As in many of the early-transition-metal-late-transition-metal (TE-TL) glasses, 
a strong tendency to short-range order (SRO) has been observed in Ni33Y67 by neutron 
diffraction with isotopic substitution [18]. Ni33Y67 shows probably the strongest SRO 
among all TE-TL glasses. Using the potentials shown in figure 2, we have performed a 
molecular dynamics simulation of amorphous Ni33Y67, starting from the liquid phase. 
After reaching equilibrium the liquid is compressed to the glassy phase (Vegard's law is 
assumed to hold for both liquid and solid phases) and re-equilibrated. Finally the alloy 
is quenched at constant volume with a quench rate of 1014 K s-l (details of the simulation 
will be reported elsewhere [19]). The resulting partial structure factors are shown in 
figure 3, together with the experimental data. It is quite surprising that almost all details 
of the very complex structure factors are well reproduced by the simulation; strong peaks 
in the Ni-Ni and Y-Y structure factors at q = 1.8 A-' and q = 2.0 A-' are almost 
coincident with a deep minimum in the Ni-Y structure factor at q = 1.8 A-'. The peak 
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0 0 12 q (  

Figure 3. Partial structure factors &.,,(q), S,,,(q) 
and Sw(q) for the metallic glass Ni33Y67: -, 
molecular dynamics simulations using the poten- 
tials shown in figure 2; -- -, neutron diffraction 

-1) [18]. 

in SNiNi cannot be attributed to the shortest Ni-Ni distances but, together with the 
minimum in SNiY, indicates rather strong chemical SRO [18]. The form of the partial 
structure factors is rather far from that of a random packing model (even allowing for 
the large size ratio) and points to a certain topological SRO as well. A detailed discussion 
of the model must be left to a forthcoming publication. 

In summary, we have developed a novel hybridised NFETBB approach to interatomic 
forces in disordered transition-metal alloys. We think that the dependence of the effec- 
tive pair interaction on the bond order determined by the shape of the d band constitutes 
an important improvement as it reflects the main physical trends in the interatomic 
forces as a function of the group-number difference of the components. First applications 
to the atomistic simulation of the structure of transition-metal glasses look rather 
promising. 
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